
EIA-708-B

8 DTVCC Interpretation Layer
The DTVCC Interpretation Layer defines the DTVCC Graphical User Interface. This discussion includes how the
caption data coding is to be formatted when encoded and how it is to be interpretee when decoded. While the
Caption Data Services Coding Layer (Section 7) identifies how service data bytes are represented. the Interpretation
Layer describes how these bytes of data are to be processed. The data bytes for each caption service are interpreted
as a unique data stream, independent from the other services.

This section defines all required and optional DTV closed-captioning features. Refer to Section 9 for a list of
features required within a minimum DTVCC receiver implementation.

8.1 DTVCC Caption Components
The five major components of DTVCC captioning are Caption Screen, Caption Windows, Caption Pens, Caption
Text, and Caption Display Synchronization.

• Caption Screen: The Caption Screen is the canvas on which caption windows are displayed.

• Caption Windows: The heart of caption definition consists of Caption Windows within which caption
text is displayed.

• Caption Pens: The Caption Pens component defines styles and attributes for the appearance of the text
within the caption windows.

• Caption Text: The Caption Text component defines how text is encoded and directed to specific
windows.

• Caption Synchronization: The Caption Synchronization component controls the flow of interpretation
of commands and caption text within the independent service data streams.

The following subsections provide a general overview of these components. These subsections are then followed by
a detailed presentation of the DTVCC caption command set.

8.2 Screen Coordinates
A set of coordinates is defined to map a rectangular grid onto the "safe-title" area of the screen. This grid is used as a
reference for superimposing captions. This reference is used to specify the position of caption windows.

Receivers which decode the DTV bit stream may have either a 16:9,4:3 or other display screen aspect ratio. The
coordinate-system grid size for a 16:9 receiver is 210 horizontal cells by 75 vertical cells. The 4:3 coordinate-system
grid size is 160 horizontal cells by 75 vertical cells. For all other aspect ratio formats, a percentage or relative
positioning coordinate system may be used such that a grid is mapped to the screen with 100 horizontal cells and I()()
vertical cells.

The grid coordinates are specified as a pair of values in the form: (horizontal, vertical). The origin is the point in the
upper left-most comer of the safe-title area, and is assigned the coordinate (0, 0). For the 16:9 format, the upper-right
comer is (209, 0), the lower-left comer is (0, 74), and the lower right comer is (209, 74). A similar set of reference
points is defined for the 4:3 format's 160 x 75 coordinate system: respectively, (0,0), (159, 0), (0, 74), and (159, 74).
It is important to remember that these grid cells are not intended for text positioning, but for window positioning.

Once the window is positioned, the starting positioning of the text rows and columns follow, depending upon the size
of the displayed font. The ending of the text rows depends upon the spacing (monospace vs. proportional space) of
the chosen font.

Figure II shows an exaggerated relationship between a 16:9 screen, the 210 x 75 grid, the overscan area, the
viewable display area, the safe-title area, and the caption windows.

25

Safe-Title Area
Caption Window
DTVCC screen

Viewable Display Area
(Safe-Image Area)

DTV Physical Screen &
Overscan Region

WJndow#3 Window #4

Window#2!

(209,74)

Figure 11 DTV 16:9 Screen and DTVCC Window Positioning Grid

8.3 User Options
Receiver manufacturers have the option to provide controls which may allow users to override styles and attributes
specified in the service channel caption streams. Optional user controls might consist of caption font size, caption
color and caption intensity (e.g., brightness) overrides. For further discussion, see the minimum DTVCC receiver
decoder manufacturer recommendations in Section 9.

8.4 Caption Windows
All caption text is displayed and manipulated in receivers in the context of caption windows. There are 8 possible
windows per service in which caption providers may write caption text. These windows may be implemented as
buffers within receivers where any, none or all can be displayed at the same time. All 8 windows are available for the
service currently selected by the user.

Manufacturers have the option of maintaining multiple sets of window buffers (i.e., instead of a single set of 8
buffers). Each set would be assigned to a service so that window processing of multiple services could occur
simultaneously. This feature would have the effect that when a user switches services, the previously acquired and
processed service data would be presented immediately. If only one set is used, the window buffers would have to be
deallocated during service switching, and the new service would not appear until the buffers are reallocated and
sufficient new service data are received.

The dimensions of a unique window specifY an area on the screen which may contain caption text. The size of the
window is based on the fom size (SMALL, STANDARD, or LARGE) that the user has selected. Caption text
designated for the window may not exceed the boundaries of the window, regardless of the font size the caption
provider has specified or the font size the user has chosen.

26

EJA-70~-B

A window's size may change on screen when a user changes the font size at the receiver. The effects of this window
sizing are described further below.

8.4.1 Window Identifier
Each of the eight windows (and window buffers) is uniquely addressed by its window ID. Window ID numbers range
from 0 to 7.

8.4.2 Window Priority
Each window has an associated priority which affects how it is displayed in conjunction with other windows that may
be displayed at the same time. A higher priority (with 0 being the highest and 7 being the lowest) displayed window
will overlap lower priority displayed windows on the screen.

8.4.3 Anchor Points
There are 9 locations within a window which serve as "anchors". An anchor specifies the reference point for
positioning the window on the screen, and the "shrink and grow" directions (see Figure 12) of the window and
caption text within the window when a user changes the font size.

8.4.4 Anchor ID
The 9 window anchor points are addressed by an Anchor ID which ranges from 0 to 8. Anchor ID 0 refers to the top
left corner of a window. Anchor 8 specifies the bottom-right corner of a window. Anchor 4 specifies the middle in
the window.

0 .. .:.'.. ,;.,'.-
1 •

7_

Figure 12 Anchor Points

Anchor points specify bounded and unbounded areas of caption text expansion and compression when the user
overrides the standard font size for caption text display. Figure 13 shows the directions of expansion and
compression of caption text for each anchor point. Solid lines indicate the bounded edges of the caption window.
Dashed lines indicate the unbounded directions in which the caption text may shrink or grow.

27

EIA-708-B

I
e

L._.._ __ __._ _. __ _._..1

r------------,-.:;;-----------1
+4e +

?+'
i .1

6

~ _.•........._ _ - ;

7 8

Figure 13 Implied Caption Text Expansion Based on Anchor Points

8.4.5 Anchor Location
The anchor location specifies where (in grid coordinates) the window's anchor point is to be physically located. and
thus, the window itself. These grid coordinates are described in Section 8.2.

8.4.6 Window Size
The window size is specified in numbers of character rows and character columns for all display formats (16:9, 4:3.
etc.). For all display formats. 15 is the maximum character row count and 32 is the maximum character column
count.

NOTE--A 16:9 format could handle longer rows (i.e.• up to 42). but caption providers should keep the
window column size at 32 characters. or less. in order to leave room on the display when the user selects the
LARGE font size (see Section 8.4.7).

As for the physical size of the window on the screen. the receiver scales the window based on the "effective font
size". The effective font size is based on a combination of the pen size chosen by the caption provider and the font
size chosen by the receiver user. The height of the window is calculated as the number of rows multiplied by the
physical height of the tallest character in the effective font size. The width of the window is calculated as the number
of columns multiplied by the physical width of the widest character in the effective font size.

8.4.7 Window Rowand Column Locking
The "lock rows" and "lock columns" window parameters fix the maximum number of rows and columns of caption
text that a window may have. If a row or column parameter is "unlocked". the receiver may automatically add or
adjust columns or rows to a window under certain circumstances.

This means that in a text-mode or roll-up type caption service (with no embedded carriage returns) where the user
has specified a font size smaller than intended by the caption provider. more rows and columns could fit into the
physical window (as it appears on the screen) than specified in the original window size parameters (see examples
below).

28

EIA-70~-B

When the user has specified a font size larger than intended by the caption provider, the window's width may grow
larger if the columns are locked. In order to insure that there is enough room on the display for 16:9 formats to grow
a caption row so that it will fit on the screen, caption providers should..-not create windows or caption rows with more
than 32 character columns. Since 16:9 formats can display 42 characters per row and if the widest character in the
large font is no more than 1.3 (i.e., 42/32) times larger than the widest character in the standard font, the enlarged
caption (and window) should fit on the screen without word wrapping.

8.4.7.1 Effects When Choosing Smaller Font
Figure 14 provides examples of the effects row and column locking have on a window and its STANDARD-sized
caption text when a receiver user chooses the SMALL font.

n

NOW IS THE WINTER OF OUR
DISCONTENT MADE GLORIOUS
SUMMER BY THIS SUN OF YORK.

Original Caption: Standard Font Size in 3 row x 28 col window

n

NOW IS THE WINTER OF OUR
DISCONTENT MADE GLORIOUS
SUMMER BY THIS SUN OF YORK;

1. Shrink with Rows and Columns locked

n

NOW IS THE WINTER OF OUR DISCONTENT
MADE GLORIOUS SUMMER BY THIS SUN
OF YORK; AND ALL THE CLOUDS THAT
LOWERED UPON OUR HOUSE IN THE DEEP

3. Shrink with Rows and Columns unlocked

n

NOW IS THE WINTER OF OUR
DISCONTENT MADE GLORIOUS
SUMMER BY THIS SUN OF YORK;
AND ALl THE CLOUDS THAT

2. Shrink with Rows unlocked and Columns locked

n

NOW IS THE WINTER OF OUR DISCONTENT
MADE GLORIOUS SUMMER BY THIS SUN
OF YORK; AND ALl THE CLOUDS THAT

4. Shrink with Rows locked and Columns unlocked

Figure 14 Examples oCCaption Window Shrinking when User Picks Smaller Font

In the Figure 14 examples, the shaded rectangle indicates the size of the original window.

In example I, the caption text and window shrink to a size in direct proportion to the original window. The caption
contains the same number oflines and columns as the original, and the same words appear on the same line.

In example 2, the window indicates that there is room for another row of caption text. The window's height remains
the same size.

In example 3, the window width and height remain the same; and with a smaller font, more characters may fit on a
row. Thus, words are shifted up into the previous rows.

In example 4, the window shrinks in the vertical direction in order to maintain the same number of rows. The
window height remains the same.

29

EIA-708-B

8.4.7.2 Effects When Choosing Larger Font
Figure 15 provides examples of the effects row and column locking have on a window and its STANDARD-sized
caption text when a receiver user chooses the LARGE font.

NOW IS THE WINTER OF OUR
DISCONTENT MADE GLORIOUS
SUMMER BY THIS SUN OF YORK.

Original Caption: Standard Font Size in 3 row x 28 col window

NOW IS THE WINTER OF OUR
DISCONTENT MADE GLORIOUS
SUMMER BY THIS SUN OF YORK.

1. Grow with Rows and Columns locked

NOW IS THE WINTER OF OUR
DISCONTENT MADE GLORIOUS
SUMMER BY THIS SUN OF YORK.

3. Grow with Rows and Columns unlocked

NOW IS THE WINTER OF
OUR DISCONTENT MADE
GLORIOUS SUMMER BY
THIS SUN OF YORK.

2. Grow with Rows unlocked and Columns locked

NOW IS THE WINTER OF OUR DISCONTENT MADE
GLORIOUS SUMMER BYTHIS SUN OF YORK.

4. Grow with Rows locked and Columns unlocked

Figure 15 Examples of Caption Window Growing when Going to Larger Font

In the Figure 15 examples above, the shaded rectangle indicates the size of the original window.

In example 1, the caption text and window grow to a size in direct proportion to the original window. The caption
contains the same number ofIines and columns as the original, and the same words appear on the same line.

In example 2, the window width remains the same, but enough rows are automatically added to accommodate all of
the caption text.

In example 3, the window is unrestricted in growth either in width or height. The decoder manufacturer is free to
format the caption in anyway desired. However, since this alIows for much ambiguity, it is suggested that the caption
be formatted as in Example I.

In example 4, the window height remains the same, but enough columns are automatically added to accommodate alI
ofthe caption text.

8.4.8 Word Wrapping
Whenever possible, the receiver should render embedded carriage returns as line breaks, since these carriage returns
indicate an important aspect of the caption's formatting as determined by the service provider. However, it may
sometimes be necessary for the receiver to ignore embedded line breaks. For example, if a caption is to appear in a
larger font, and if its window's rows and/or columns are unlocked, the rows of text may need to become longer or
shorter to fit within the allocated space. Such automatic reformatting of a caption is known as "word wrap."

30

EIA-70!\-B

The receiver should follow standard typographic practice when implementing word wrap. Potential breaking points
(word-wrapping points) are indicated by the space character (20h) and by the hyphen character (2Dh).

If a row is to be broken at a space, the receiver should remove the space from the caption display. If a row is to be
broken after a hyphen, the hyphen should be retained.

If an embedded return is to be removed, it should usually be replaced with a space. However, if the character to the
left of the embedded return is a hyphen, the embedded return should be removed but NOT replaced with a space.

This specification does not include optional hyphens, nor does it provide for any form of automatic hyphenation. No
non-breaking hyphen is defined. The non-breaking space (AOh in the Gl code set) and the non-breaking transparent
space (21 h in the G2 code set) should not be considered as potential line breaks.

If a single word exceeds the length of a row, the word should be placed at the start of a new row, broken at the
character following the last character that fits on the row, and continued with further breaks if needed.

8.4.9 Window Text Painting
This section defines window text painting parameters and the interactions between them.

8.4.9.1 Justification
Caption text shall be formatted within the window based upon the justification type. The nomenclature for the
justification types is based on standard English left-to-right Print Direction (see Section 8.4.9.2), and should be
interpreted as follows:

Left Justification -- Text is justified to the start of the row, e.g., the left side for left-to-right print direction, the
bottom for bottom-to-top print direction, and so on.

Right Justification -- The opposite of/eft justification. The text is aligned to the end of the row.

Centered Justification -- The text is centered horizontally when the print direction is left-to-right or right-to-Ieft,
and centered vertically when the print direction is top-to-bottom or bottom-to-top.

Full Justification - The text is aligned to the left and right margins when the print direction is left-to-right or right
to-left, and to the top and bottom margins when the print direction is top-to-bottom or bottom-to-top.

8.4.9.2 Print Direction
The Print Direction parameter specifies in which direction characters will be written on a (horizontal or vertical)
caption row (left-to-right, right-to-Ieft, top-to-bottom, or bottom-to-top).

Table 16 defines how the cursor should move after drawing a character (when Justification is "Left" - see Section
8.4.9.1) or after receiving a carriage return for each combination of Print Direction and Scroll Direction (see Section
8.4.9.3). Combinations ofPrint Direction and Scroll Direction that are not listed in this table are not permitted.

31

EIA-708-B

Print Direction Scroll Direction Cursor Movement Carriage Return Behavior
Left -> Right Top-> Bottom increment column decrement row, column=O
Left -> Right Bottom->Top increment column increment row, column=O
Right->Left Top-> Bottom decrement column decrement row, column=max
Ri2ht->Left Bottom->Top decrementcolunnn increment row, column=max
Top-> Bottom Left -> Ri~ht increment row decrement column, row=O
T00-> Bottom Right->Left increment row increment column, row=O
Bottom->Top Left -> Right decrement row decrement colunnn, row=max
Bottom->Top Right->Left decrement row increment colunnn, row=rnax

Table 16 Cursor Movement After Drawing Characters

Figure 16 shows how a 3-row caption would appear using various justifications (see Section 8.4.9.1), Print
Directions and Scroll Directions (see Section 8.4.9.3).

Left justified
Left->Right print
Bottom ->Too scroll
ROW ONE
TWO
AND THREE

Left justified
Top->Bottom print
Right->Left scroll
RTA
OWN
WOD

o T
N H
E R

E
E

Left justified
Right->Left print
Bottom ->Too scroll

ENO WOR
OWT

EERHT DNA

Right justified
Bottom ->Top print
Left->Ri2ht scroll
EOE
EWN
RTO
H
T W

o
D R
N
A

Right justified
Left->Right print
Too ->Bottom scroll

AND THREE
TWO

ROW ONE

Center justified
Left->Right print
Bottom ->Top scroll

ROW ONE
TWO

AND THREE

Right justified
Right->Left print
Too ->Bottom scroll
EERHT DNA
OWT
ENO WOR

Center justified
Top->Bottom print
Left->Right scroll
A
N R
D 0

TW
TW
HOO
R N
E E
E

Figure 16 Examples of Various Justifications, Print Directions and ScroD Directions

8.4,9.3 Scroll Direction
The Scroll Direction parameter specifies in which direction the text will scroll (Ieft-ta-right, right-ta-Ieft, top-to
bottom, or bottom-ta-top) when carriage returns and word wrapping is encountered. For example, NTSC style roll-up
captions are achieved by specifying left-to-right printing with bottom-to-top scrolling.

Horizontal scrolling is allowed only with vertical print directions, and vertical scrolling with horizontal print
directions (see Section 8.4.9.2). For example, left-to-right scrolling may be used with top-to-bottom or bottom-ta-top
printing, but not with left-to-right or right-to-Ieft printing.

8.4.9.4 Combining Text Painting Attributes
This section describes one of a multitude of text painting effects using the various window attributes.

A 2-line ticker-tape effect can be accomplished with the following parameter settings: print direction set to "top-to
bottom" with scroll direction set to "right-ta-left", and window size set to 2 rows and X columns. The initial pen
location is set to the upper right comer of the window. One character from row I is sent, followed by I character
from row 2, and a carriage return, and so on. The first character for row I will appear on the screen by itself. With
top-to-bottom print direction, the Ist character for row 2 will appear beneath the first row I character. The carriage
return is sent, creating a new column and causing the existing 2 characters to scroll to the left and the next row I
character to appear to the right of the existing row I character.

32

EIA-70l'-B

8.4.10 Window Display
Caption text can be written to a window whether it is currently displayed (i.e., visible) or not. Writing a whole
caption to a non-displayed window and then sending a DisplayWindows command wiB cause the caption to "pop
on" (if the SNAP display effect has been set for the window). To achieve successive "pop-on" type captions, two
windows are required Oust as displayed and non-displayed memory buffers are used in NTSC caplioning), with the
required sequencing of DisplayWindows and HideWindows commands to maintain the effect.

When a window is displayed or hidden, a Display Effect parameler can be specified which controls whether the
window snaps on/off ("pop-on"), fades on/off, or wipes on/off. The rate of fade on/off may be a manufacturer's
oplion, but an effecl speed can be specified with the SetWindowAttributes command. The direction (Ien-to-right
wipe, right-to-Ien wipe, top-to-bottom wipe, and bottom-to-top wipe) in which a window wipes on/off can also be
specified with this command.

8.4.11 Window Colors and Borders
The area within a window can have different characteristics regarding color and opacity. Windows can be clear, or
filled with a specified color. A window can be filled with an opaque color from a color palette (see Section 8.8). The
colors within a window can have various effects associated with them. The window can be transparent (i.e., clear
that is, letting the underlying video show through), translucent (i.e., the underlying video is passed through a fixed
level of color background filtering so that underlying video may partially show through the window), solid (opaque
with a nominal level of saturation), or flashing (alternating transparency and opacity at the nominal, or solid, level of
saturation).

Windows may have no borders, or be bounded by an enclosing border. Borders may be raised, depressed, uniform,
or drop-shadowed (left or right). Manufacturers have a bit of latitude in how these border effects are achieved. A
uniform border may appear as a single line surrounding the window. Raised, depressed and shadowed borders can be
used to achieve 3-dimensional effects.

8.4.12 Predefined Window and Pen Styles
Colors, text painting, effects, and border types can be customized with the SetWindowAttributes and
SetPenAttributes commands. However, the caption provider may wish to use predefined standard windows styles.
A set of predefined styles will be hard stored in receivers. This set will anticipate the most widely used types of
caption windows in order to conserve caption channel bandwidth by eliminating the need to transmit superfluous
SetWindowAttributes and SetPenAttributes commands.

Predefined window and pen styles can be specified by the window style and pen style ID parameters in the
DefineWindow command. See Section 9.12 for the defined "predefined window and pen styles".

8.5 Caption Pen
The caption text within a window is written with a pen. A pen governs the size, font, colors, and styles of the text
within a window. Pen attributes are specified separately from window attributes through the use of the
SetPenAttributes command. A window may contain text with more than one combination of pen attributes (i.e.,
different fonts, colors, etc.). Pen characteristics remain constant for a window unless specifically changed (via a
subsequent SetPenAttributes command) by the caption provider. Pen attribute changes only affect text written after
the change (i.e., the SetPenAttributes command does not change existing text within a window) and until a new
SetPenAttributes command is encountered.

8.5.1 Pen Size
TV receivers may implement different sized characters (e.g., small, standard, and large) for supported fonts. Caption
providers specify the pen size to be displayed, but users may override the size of the characters (i.e., which font size
is to be viewed on the receiver) as desired.

8.5.2 Pen Spacing
Monospacing and proportional spacing are inherent attributes of the font chosen to write caption text. They cannot
otherwise be controlled by either the caption provider or the user.

8.5.3 Font Styles
Caption providers may specify I of 8 different font styles to be used to write caption text. The styles specified in the
"font style" parameter of the SetPenAttributes command are numbered from 0 through 7.

33

EIA-708-B

The following is a list of the 8 recommended font styles. For infonnation purposes only, each font style references
one or more popular fonts which embody the characteristics of the styl~:

o- Default (undefined)
I - Monospaced with serifs (similar to Courier)
2 - Proportionally spaced with serifs (similar to Times New Roman)
3 - Monospaced without serifs (similar to Helvetica Monospaced)
4 - Proportionally spaced without serifs (similar to Arial and Swiss)
5 - Casual font type (similar to Dom and Impress)
6 - Cursive font type (similar to Coronet and Marigold)
7 - Small capitals (similar to Engravers Gothic)

Implementation of these fonts styles by decoder manufacturers is optional. Font styles which are not supported in a
decoder should be displayed in an available font which is most similar to the requested font style in the
SetPenAttributes command.

8.5.4 Character Offsetting
Characters can be positioned relative to the row baseline in one of three ways: subscript (offset vertically
downward), superscript (offset vertically upward), or normal (no offset).

8.5.5 Pen Styles
Pen styles can be italicized and/or underlined.

8.5.6 Foreground Color and Opacity
The foreground color and opacity of the caption characters can be specified by the caption provider. The character
foreground opacity can be set to transparent (i.e., showing underlying video), translucent (i.e., showing a filtered
level of underlying video), solid, or flashing.

8.5.7 Background Color and Opacity
Characters are individually contained within a small, rectangular background box. These background boxes have
color and opacity attributes which may be specified separately from character foreground attributes.

8.5.8 Character Edges
The color attributes of the edges (or outlines) of the character foregrounds may be specified separately from the
character foreground and background. Edge opacities have the same attribute as the character foreground opacities.
The type of edge surrounding the body of the character may be NONE, RAISED, DEPRESSED, UNIFORM, or
DROP_SHADOWED.

8.5.9 Caption Text Function Tags
Caption text can be tagged with a marker indicating the type of text content that is being encoded. This tagging is
performed by caption providers via the SetPenAttributes command. With this command, caption text can be tagged
with anyone of the following qualities:

0- Dialog (normal words being spoken by characters in the programming)
1 - Source or speaker ID (name of the speaker, or a description of the source ofa sound)
2 - Electronically reproduced voice (spoken audio heard by the characters in the drama coming
from a phone, radio, PA, etc.)
3 - Dialog in a language other than the drama's primary language
4 - Voiceover (narration or other disembodied voice NOT heard by the characters in the drama)
S - Audible Translation (voice of a disembodied translator NOT heard by the characters in the
drama)
6 - Subtitle Translation (text showing a translation into the primary language of the drama)
7 - Voice quality description (description ofa voice quality)
8 - Song Lyrics (words being sung)
9 - Sound effect description (a description of a nonverbal sound or music heard by the characters
in the drama)

34

EIA-708-B

10 - Musical score description (a description of background music NOT heard by the characters
in the drama)
11 - Expletive (an interjectory word or expression,possible profane or harsh)
12 to 14 - (undefined)
15 - Text not to be displayed (reserved for future use by a text-based control and information
channel within the caption text stream; e.g., hypertext, related non-caption program information)

In the previous list, all of the tagged text is to be displayed in the current caption window as indicated, except for tag
15 ("Text not to be displayed"), and optionally, tag II ("Expletive").

Decoder manufacturers have the flexibilty to display tagged text in an number of ways desired in order to enhance
the caption viewing experience. For example, "Source or speaker ID" text may always be automatically displayed in
italics by the decoder. This may be a feature which the viewer can enable and disable.

If no other information is available, decoders are to default caption text to the "Dialog" tag (0). That is. if caption
text is received for a window when no SetPenAttributes command has been received, the text is to be treated as
"Dialog".

8.6 Caption Text
Caption text is always written to the current caption window with the attributes set with the preceding SetPenColor
and SetPenAttributes commands. There is no specific Text Write caption command; any displayable characters or
codes from the GO, G I, G2, or G3 code sets in Service Blocks which are not part of any caption command are
considered text to be written to the current window.

Caption text sequences must be terminated by either the start of a new DTVCC Command, or with an ASCII ETX
(Ox03) character when no other DTVCC Commands follow. This requirement aids decoders in processing text
sequences when text spans multiple service blocks.

8.7 Caption Positioning
The starting row and column position of an individual character or set of characters may be specified at any time via
the SetPenLocation command. The position of subsequent characters written after a location is specified depends
upon the Print Direction and Scroll Direction specified for a window.

Character positions specifY memory locations within the internal buffer holding the window text, and thus, do not
specifY physical locations on the screen. Screen locations are dependent on a multitude ofpen and window attributes
(e.g., character size, character spacing, justification, and print direction), and whether or not the font is
proportionally spaced.

8.8 Color Representation
Foreground and background colors are specified in the Caption Commands as combinations of the red-green-blue
color triad. Two bits are specified for each red, green, and blue color value which defines the intensity of each
individual color component. Colors are specified as a group; i.e., «red>, <green>, <blue». The range of color
specification is (0, 0, 0) [for black] through (3, 3, 3) [for bright white]. Bright red has a color value of (3, 0, 0);
bright green has a color value of (0,3, 0); and bright blue has a color value of (0,0, 3). This coding scheme provides
64 different colors.

8.9 Service Synchronization
For the most part, caption providers insert caption commands and text into the DTVCC Caption Channel stream in a
real-time manner. That is, captions are transmitted shortly before they are to be displayed. This is the technique used
in NTSC captioning.

DTVCC provides for an additional synchronization capability by allowing DTVCC data to be pre-sent and processed
at a later time, all under the control of the decoder. The Delay command provides this added functionality.

8.9.1 Delay Command
Decoders must maintain a Service Input Buffer for each of the services which can be processed simultaneously. This
input buffer has a minimum size of 128 bytes. All DTVCC data for a service pass through the Service Input Buffer.

35

EIA-708-B

Most of the time, the data falls through the buffer instantaneously, and the data are processed by thc DTVCC
decoder as they are received.

-

The Delay command is used to instruct the decoder to suspend processing of the Service Input Buffer data for a
specified time period. This command has a time-out period specified as its parameter. This period is specified in
tenths of seconds.

When a Delay command is encountered, the decoder waits for the specified delay time to expire before processing
any other service data. During the delay interval, incoming data for the active service is buffered in the Service Input
Buffer. When the delay interval expires, interpretation of the incoming data is resumed.

The Delay command may be used in instances where the caption provider knows that it is about to lose access to the
DTVCC encoder-to-decoder stream. Prior to losing access, the caption provider pre-sends a set of DTVCC
commands with one or more embedded Delay commands. When the caption provider loses access, the decoders
process the sequencing of the buffered data according to the providers' instructions.

Any active delay interval is automatically canceled when the Service Input Buffer becomes full. The decoder begins
interpreting buffered data in order not to lose any incoming data.

8.9.2 DelayCancel Command
Caption providers may override an active Delay command via the DelayCancel command. The DelayCancel
command terminates any currently pending Delay command processing, and causes the decoder to begin processing
any data in the Service Input Buffer.

The DelayCaneel command must be detected (recognized) prior to the input of Service Input Buffer. That is, the
DelayCommand is not buffered. If it were, it would not be processed until the delay interval expires.

The Delay and DelayCaneel commands are analogous to Service Input Buffer processing "suspend" and "resume".
These two commands allow caption providers to preload a set of commands and with a Delay command (suspend) to
delay their output (using the maximum delay interval), and then issue a DelayCaneel command (resume) at a desired
instance to have the commands executed en mass.

8.9.3 Reset Command
The Reset command reinitializes a DTVCC service. The effects of re-initialization are described in Section 8.9.5.
The Reset command is encoded by a caption provider to reset caption service processing within decoders.

It is recommended that a Reset command be issued at the beginning of a captioned program, or program segment.
This ensures that decoders are initialized and ready for a new program, and erases any left-over windows and
captions that were not deleted as a result of such events as video up-cutting during transitions from one program
source to another.

8.9.4 Reset and DelayCancel Command Recognition
In order for the DelayCaneel and service Reset commands to be effective, they must be recognized after they are
retrieved from the Caption Channel Data Stream and prior to their routing to (insertion into) the Service Input
Buffer. All other commands are interpreted when they are pulled from the Service Input Buffer.

Figure 17 shows this point of "pre-processing" for a decoder which simultaneously processes multiple service
streams.

36

+
Reset &.... DelayCancel r--+t Service 11 I Input Buffer ... ~

Cmd DctcclOr 11 J ... DTVee
Command

DTVCC ResetlDelaYCancel Sil!llal #1
Interpretor

Caption Channel ·
Data Stream · .:

· Reset/Delay Cancel Sil!llal #n ...
I

Reset &.... DelayCancel~ Service #n Input Buffer ...
Cmd Detector #n ...

I

!\-B

Figure 17 Reset & DeIayCancel Command Detector(s) and Service Input Buffers

For descriptive purposes, Figure 18 shows a "hardware" implementation for the "Reset & DelayCancel Command
Detector(s)"; a software implementation should be straight-forward. The Detectors may be implemented as a pair of
8-bit comparators. Since each of these commands is only a single byte in length (Reset = Ox8F, DeIayCancel =
Ox8E), this comparison may be simple. as is shown in Figure 18.

Service
Data

--+ Channel Service Input Buffer
Transfer
Register

ENB
1
0 Reset0
1 = Detect ...
1 ~

1 Reset Cmd (Ox8F)
1 Comparator
1

-
5iB

1
0 DelayCancel0
1 = Detect ...
1
1 DelayCancel Cmd (Ox8E)
1 Comparator
0

'--

Figure 18 Reset & DeIayCancel Command Detector(s) Detail

8.9.5 Service Reset Conditions
The "resetting" or "re-initialization" ofa service means:

• that the service's windows are removed from the display,
• all defined windows for the service are deleted,
• all window and pen attributes for the service are deleted, and
• the Service Input Buffer is cleared.

37

EJA-708-B

A service shall be reset when anyone of the following events occur:

I. a Reset command is received for a service.
2. a channel change occurs.
3. the Service Input Buffer overflows.
4. A loss of continuity in the Caption Channel Packet sequence_number.

8.10 DTVCC Command Set
This section presents the commands which may be encoded by caption providers. The commands are grouped into
the following command types: Window Commands, Pen Commands, Caption Text Commands. and Synchronization
Commands.

8.10.1 Window Commands
These commands create, delete, modify, and display windows, and specify the current caption window for a caption
servIce.

Command Code

CWO, ... ,CW7

DFO, •.. , DF7

DLW

DSW

HDW

TGW

SWA

Command Name Parameters

SetCurrentWindow window 10

DefineWindow window 10, priority,
anchor point, relative positioning, anchor venical.
anchor horizontal, row count,
column count, row lock, column lock, visible,
window style 10, pen style ID

DeleteWindows window map

DisplayWindows window map

HideWindows window map

ToggleWindows window map

SetWindowAttributes justify, print direction,
scroll direction, wordwrap,
display effect, effect direction,
effect speed, fill color,
fill opacity, border type,
border color

8.10.2 Pen Commands
These commands define pen attributes and colors.

COmmand Code Command Name Parameters

SPA SetPenAttributes pen size, font, text tag, offset,
italics. underline, edge type

SPC SetPenColor fg color, fg opacity, bg color,
bg opacity, edge color

SPL SetPenLocation row. <column

8.10.3 Synchronization Commands
These commands control the rate of service data interpretation.

38

Command Code

DLY

DLC

RST

Command Name

Delay

DeJayCancel

Reset

Parameters

tenths of seconds

EIA-70S-B

8.10.4 Caption Text
There is no specific Text Write caption command. That is, any characters or codes from the GO, G1, G2. or G3 code
sets in Service Blocks which are not part of any caption command are considered text to be written to the current
window. Any such encountered text is written to the current window starting at the window's current cursor position.
The window's current cursor is adjusted automatically to the row and column following the last character in the text
string.

In order to assist decoders in determining the end of caption text segments for dangling segments at the end of a
series of caption commands and text. an ETX code (Ox03) from the CO Code Space is to be inserted at the end of the
text segment to terminate the segment. Text which is immediately followed by a caption command code (from the Cl
Code Space) does not require the ETX code. That is, the decoder determines the end of a text segment when it
encounters a caption command code, or an ETX code.

Without the ETX assist, decoding software may find it difficult to know if it should wait until the next service block
to see if there is more caption text for a caption row when a service block terminates in text. If the last used byte in
the block is an ETX, then the decoder knows there is no more text for this segment in a subsequent service block,
and the decoder can process it as a single entity (this is especially helpful when doing Center justification of a row
and word wrap processing, for example). If the last used byte in the block is a text character, then the decoder must
wait until the next service block to see if there is any more text.

8.10.5 Command Descriptions
Each command is described in detail within this section.

39

EJA-708-B

Name:

Command Type:

Format:

Parameters:

Command Coding:

Description:

SET CURRENT WINDOW - (CWx)

SetCurrentWindow - SpecifY current window IO

Window

SetCurrentWindow (window ID)

• window ID (id) is the unique window identifier (0 - 7).

CWO, ... , CW7 = 80h, ... , 87h (10000000b, ... , 10000111 b)

l-._l__...;.O__.-;.0 O;..-_....;0~..I......;.;id~2_....;i;.;;d.:.l _...;.i,;;do~l command

SetCurrentWindow specifies the window to which all subsequent window style
and pen/text commands are directed. The window ID must address a window
which has already been created by the DefineWindow command. This command
initializes a "current window IOn variable internal to the decoder.
SetCurrentWindow directs the fol1owing commands to the specified window:
SetWindowAttributes, SetPenAttributes, SetPenColor, SetPenLocation,
WriteText.

40

."

Name:

Command Type:

Format:

Parameters:

EIA-708-B

DEFINE WINDOW - (DFO ", DF7)

DefineWindow - Create window an4..set initial parameters

Window

DefineWindow (window ID. priority. anchor point, relative positioning. anchor
vertical. anchor hori=ontal. row count, column count, row lock. column lock.
visible. window style ID. pen style ID)

• window ID (id) is the unique window identifier (0 - 7)
• prioritv (p) is the window display priority (0 - 7)
• anchor point (ap) is the window anchor position number to use for the
window's position on the screen (0 - 8).
• relative positioninr: (rp) is a flag that, when set to I, indicates that the anchor
vertical (av) and anchor hori=ontal (ah) coordinates specifY "relative
coordinates" (i.e .. percentages) instead of physical screen coordinates.
• anchor vertical (av) is the vertical position of the window's anchor point on
the viewing screen when the window is displayed (0 - 74 for 16:9 and 4:3
systems and the relative positioning (rp) parameter is set to 0, or 0-99 when the
'rp' parameter is set to 1).
• anchor hori=ontal (ah) is the horizontal position of the window's anchor point
on the viewing screen when the window is displayed (0 - 209 for 16:9 systems, 0
- 159 for 4:3 systems and the relative positioning (rp) parameter is set to 0, or 0
99 when the 'rp' parameter is set to I).
• row count (rc) is the number of virtual rows of text (assuming the
STANDARD pen si=e; see SetPenAttributes) the window body will hold (0
II).
• column count (cc) is the number of virtual columns of text (assuming the
STANDARD pen si=e; see SetPenAttributes) the window body will hold (0
31 for 4x3 formats, and 0 - 41 for 16x9 formats).
• row lock (rl), when set to YES, fixes the absolute number of rows of caption
text the window will contain. When NO, row lock permits a receiver to add more
rows to a window if the user selects a smaller size font other than intended by the
caption provider. [YES, NO] = [1,0].
• column lock (eI), when set to YES, fixes the absolute number of columns of
caption text the window will contain. When NO, column lock permits a receiver
to add more columns to a window if the user selects a smaller size font other
than intended by the caption provider. [YES, NO] = [1, 0).
• visible (v), when set to YES, causes the window to be viewed (i.e., displayed)
on the screen immediately after it is created. When set to NO, the window is not
displayed (i.e., hidden) after it is created. [YES, NO] = [1,0).
• window stvle ID (ws), when non-zero, specifies 1 of 7 static preset window
attribute styles to use for the window when it is created (0 - 7). When zero
during a window create, the window style is automatically set to window style
#1. When zero during a window update, no window attribute parameters are
changed. See SetWindowAttributes command.
• pen srvle ID (ps), when non-zero, specifies I of 7 static preset pen attribute
styles to use for the window when it is created (0 - 7). When zero during a
window create, the pen style is automatically set to pen style # I. When zero
during a window update, no pen attribute parameters are changed. See
SetPenAttributes command.

41

EIA-708-B

Command Coding: DFO, ... , DF7 =98h, ... ,9Fh (l0011000b, ... , l00l1111b)

b., bA b~ b4 b3 b l b l bo
1 0 0 I 1 I id, id] ido
0 I 0 I v I rl I cI I Ih 01 Pn

rp I aV7 aV6 av~ aV4 aV3 av, avo
ah7 ah,. ah, a~ ah, ah, ah l aho
aP3 ao, api apo I rel re, rCI rco
0 I 0 I cCs CC4 CC3 cc, CCI cCo

° I 0 I ws~ WSI wSo I PS2 PSI PSo

command

pannI

parm2

pann3

parm4

pann5

parm6

Description: DefineWindow creates a window for the specified window identifier (It'indoll'
ID) and initializes the window with the non-style parameters listed in the
command and with the available static style presets specified with the window
style ID and pen style ID parameters. If the window is not already defined when
the DefineWindow command is received, the window is created; otherwise it is
simply updated. If the window is being created, all character positions in the
window are set to the window fill color and the pen location is set to (0, 0). The
DefineWindow command also makes the defined window the current window
(see SetCurrentWindow).

When a window is created, a specific or automatic window style ID is assigned
in order to preload a set of known window attribute values. These attributes can
be subsequently modified with the SetWil)dowAttributes command. A pen style
ID is assigned in the same fashion. Pen style attributes can be subsequently
modified with the SetPenAttributes command.

When a decoder receives a DefineWindow command for an existing window,
the command is to be ignored if the command parameters are unchanged from
the previous window definition. Encoders or caption providers may periodically
repeat window definitions in order for receivers to acquire a service and begin
decoding and displaying captions with little delay. It is suggested that all window
and pen definition and attribute commands be repeated in this way.

When an existing window is being updated (e.g., resized or moved) with the
DefineWindow command, the pen location and pen attributes are unaffected.

42

Name:

Command Type:

Format:

Parameters:

EIA-70g-B

CLEAR WINDOWS - (CLW)

ClearWindows - Clears Text from a set of windows

Window

ClearWindows (window map)

• window mae (w) is an 8-bit bitmap which specifies the window(s) affected by
the command. Each bit position represents a window (i.e.• window ID) to be
affected (e.g., bit position 4 addresses the window with the window ID of 4). A
value of I in a bit position specifies that the associated window is to be
processed by the command. A bit value of 0 indicates that the associated window
is unaffected by the command.

Command Coding: CLW = 88h (lOOOlOOOb)

b7 bfi b~ b4 b, b! b l bn

1 0 0 0 1 0 0 0 command

w, W6 Ws W4 w3 Wz WI Wo pannI

Description: ClearWindows removes any existing text from the specified window(s) in the
window map. When a window is cleared, the entire window is filled with the
window fill color.

43

EIA-708-B

Name:

Command Type:

Format:

Parameters:

DELETE WINDOWS - (DLW)

DeleteWindows - Deletes window definitions for a setofwindows

Window

DeleteWindows (window map)

• window map (w) is an 8-bit bitmap which specifies the window(s) affected by
the command. Each bit position represents a window (i.e., window ID) to be
affected (e.g., bit position 4 addresses the window with the window ID of 4). A
value of I in a bit position specifies that the associated window is to be
processed by the command. A bit value of 0 indicates that the associated window
is unaffected by the command.

Command Coding: DLW = 8Ch (lOOOl100b)

b7 bfi b~ b4 b, :: b l bn

1 0 0 0 1 0 0 command

W7 W6 Ws W4 W, WI Wo panni

Description: DeleteWindows removes all specified windows from the receiver. For example,
a window map value of 64 (hex) deletes windows 6 (W6), 5 (ws), and 2 (W2). A
window map value ofFF (hex) deletes all defined windows in the receiver. If the
current window is deleted, then the decoder's current window ID is unknown
and must be reinitialized with either the SetCurrentWindow or DefineWindow
command.

44

Name:

Command Type:

Format:

Parameters:

EIA-70f;-B

DISPLAY WINDOWS - (DSW)

DisplayWindows - Causes a set of windows to become visible

Window

DispIayWindows (window map)

• window map (w) is an 8-bit bitmap which specifies the window(s) affected by
the command. Each bit position represents a window (i.e., window ID) to be
affected (e.g., bit position 4 addresses the window with the window ID of 4). A
value of I in a bit position specifies that the associated window is to be
processed by the command. A value of 0 indicates that the associated window is
unaffected by the command..

Command Coding: DSW = 89h (IOOOIOOlb)

b7 b6 b. b4 b b b l bo
1 0 0 0 ~; ~; 0 1 command

w, W6 Ws W4 WI Wo pannI

Description: DisplayWindows causes the specified, existing windows to be visible on the
receiver display screen. For example, a window map value of 96 (hex) displays
windows 7 (W7), 4 (W4), 2 (W2), and I (WI)' A window map value of FF (hex)
causes all existing windows in the receiver to be displayed. This command does
not affect the current window ID.

45

EIA-708-B

HIDE WINDOWS - (HDW)

Name:

Command Type:

Format:

Parameters:

HideWindows - Causes a set of windows to become invisible

Window

HideWindows (window map)

• window map is an 8-bit binnap which specifies the window(s) affected by the
command. Each bit position represents the window (i.e., window ID) to be
affected (e.g., bit position 4 addresses the window with the window ID of 4). A
value of I in a bit position specifies that the associated window is to be
processed by the command. A value of 0 indicates that the associated window is
unaffected by the command.

Command Coding: HDW = 8Ah (lOOOlOlOb)

b, b~ b. bi b1 b b l bo
1 0 0 0 1 :; 1 0 command

w, w~ W. Wi w3 WI Wo pannI

Description: HideWindows causes all specified and currently defined windows to be
removed from the receiver display screen. For example, a window map value of
72 (hex) hides windows 6 (W6), 5 (ws), 4 (W4), and I (wd. A window map value
ofFF (hex) causes all existing windows in the receiver to be hidden.

46

----------_.

Name:

Command Type:

Format:

Parameters:

EIA-708-B

TOGGLE WINDOWS - (TGW)

Toggle Windows - Toggles Display~ide status of a set of windows

Window

Toggle Windows (window map)

• window map is an 8-bit bitmap which specifies the window(s> affected by the
command. Each bit position represents the window (i.e., window lD) to be
affected (e.g., bit position 4 addresses the window with the windo'w lD of 4). A
value of I in a bit position specifies that the associated window is to be
processed by the command. A value of 0 indicates that the associated window is
unaffected by the command.

Command Coding: TGW =8Bh (lOOOIOllb)

b7 b6 b. b~ b1 b2 b l bn

1 0 0 0 1 0 1 1 command

W7 W6 Ws W4 W3 W, WI Wo panni.

Description: Toggle Windows causes all specified and currently defined windows to toggle
their display/hide status. That is, the specified windows in the window map
which are currently displayed will be hidden, and the hidden ones will be
displayed. For example, a window map value of 83 (hex) toggles windows 7
(W7), I (WI), and 0 (wo). A window map value of FF (hex) causes all existing
windows in the receiver to be toggled.

47

._....•_--"'---------

EIA-708-B

Name:

Command Type:

Format:

Parameters:

SET WINnOW ATTRIBUTES - (SWA)

SetWindowAttributes - Defines the window styles for the current window.

Window

SetWindowAttributes (justify. print direction. scroll direction,
wordwrap. display effect. effect direction. effect speed. fill color. fill opacity.
border type. border color)

• justify (j) specifies how the text to be written in the window will be justified.
[LEFT, RIGHT, CENTER, FULL] = [0, 1,2,3].
• print direction (pd) specifies in which direction text will be written in the
window. [LEFT_TO_RIGHT, RIGHT_TO_LEFT,
TOP_TO_BOTTOM, BOTTOM_TO_TOP] = [0, I. 2, 3].
• scroll direction (sd) specifies which direction text will scroll when the end of a
caption "line" is reached. [LEFT_TO_RIGHT,
RIGHT_TO_LEFT, TOP_TO_BOTTOM, BOTTOM_TO_TOP] == [0, I, 2,
3)..
• wordwrap (ww), when set to YES, word wrapping is enabled. When set to
NO, wordwrapping is disabled. [YES, NO] = [I, 0).
• displav effect (de) specifies the effect that is to take place when the window is
displayed and when it is hidden. When the SNAP effect is chosen, the window
will pop-on the screen when the window is displayed and pop-off when the
window is hidden. The FADE effect causes the window to fade onto and off of
the screen at the specified effect rate. The WIPE effect causes the window to
swipe onto and off of the screen at the specified effect rate and effect direction.
[SNAP, FADE, WIPE] = [0, 1,2].
• effect direction (ed) specifies which direction a WIPE window will appear on
the screen. Note that a WIPE window will wipe-off of the screen in the opposite
direction from which it wiped-on. [LEFT30_RIGHT, RIGHT30_LEFT,
TOP_TO_BOTTOM, BOTTOM_TO_TOP] = [0, 1,2,3].
• effect speed (es) specifies, in .5 second units, how fast windows with WIPE
and FADE effects will appear and disappear from the screen when they are
displayed and hidden. The effect speed value may range from I to 15,
approximating .5 (I x .5) to 7.5 (15 x .5) seconds of effect speed variation.
• fill color (fr, fg, fb) is the color of the windows interior (see Section 8.4.11).
• fill opacity (fo) is the characteristic of the fill color of the window and the
window border. [SOLID, FLASH, TRANSLUCENT, TRANSPARENT] == [0,
1,2,3].
• border type (bt) defines the type of outer edge surrounding the window.
[NONE, RAISED, DEPRESSED, UNIFORM,
SHADOW_LEFT, SHADOW_RIGHT] = [0, 1,2,3,4,5].
• border color (br, bg, bb) is the color of the windows outer edge(see Section
8.4.11).

48

EIA-708-B

Command Coding: SWA =97h (lOOI0I11b)

panni

pann~

pann3

pann4

command

bbbbbbbb7 6 ~ 14 I] . '1 0

1 0 0 1 0 1 1 1
fOr foo fr l fro f~1 f~ fbi fbo
btl bto br, bro b21 b20 bbl bbo
bt~ I ww pd, pdo sd l sdo j, io
eS3 eS2 es, eSo ed, edo de, deo

Description: SetWindowAttributes assigns the specified style attributes to the current
window. This command can be issued any number of times to an existing
window. The style attributes will overwrite any existing attributes assigned to the
window.

49

EIA-708-B

Name:

Command Type:

Format:

Parameters:

SET PEN ATTRIBUTES - (SPA)

SetPenAttributes - Assign pen styleJlttributes for the current window.

Pen

SetPenAttributes (pen size. font, text tag. offset. italics. underline. edge type)

• pen size (s) defines which of three pen sizes is to be used for text written to the
current window, as specified by the current window ID. Note that the pen size
displayed on the screen can be overridden by the user. [SMALL, STANDARD.
LARGE] = [0. I. 2].
• font st\'le (fs) specifies which one of 8 different predefined font styles (see
Section 8.5.3) to be used for text written to the current window (0 - 7).

o- Default (undefined)
I - Monospaced with serifs
2 - Proportionally spaced with serifs
3 - Monospaced without serifs
4 - Proportionally spaced without serifs
5 - Casual font type
6 - Cursive font type
7 - Small capitals

• text tag (tt) specifies which one of 16 different predefined caption text
function tags (see Section 8.5.9) is to be associated with the following caption
text to be written to the current window (0 - 15).

0- Dialog
I - Source or speaker ID
2 - Electronically reproduced voice
3 - Dialog in language other than primary
4 - Voiceover
5 - Audible Translation
6 - Subtitle Translation
7 - Voice quality description
8 - Song Lyrics
9 - Sound effect description
10 - Musical score description
II - Expletive
12 to 14 - (undefined)
15 - Text not to be displayed

• offset (0) specifies sub-scripting and super-scripting attributes for text written
to the current window. [SUBSCRIPT, NORMAL, SUPERSCRIPT] = [0,1,2].
• italics (i) specifies if text written to the current window is italicized. [YES,
NO] = [I, 0].
• underline (u) specifies if text written to the current window is underlined.
[YES, NO] = [I, 0].
• ed~e type (et) is the type of outlined edge ofthe text. [NONE, RAISED,
DEPRESSED, UNIFORM, LEFT_DROP_SHADOW,
RIGHT_DROP_SHADOW] = [0, 1,2,3,4,5].

50

EIA-70S-B

Command Coding: SPA =90h (lOOlOOOOb)

command

parmI

bbbbbbbb7 LJ~ ~ 4 " LJ, " D

1 0 0 1 (t
-

0 0 0
tt, tt, ttl no I 0, 00 I s, So
i I u I et, et, eto I fs: ft J fto

Description: SetPenAttributes assigns pen style attributes for the currently defined window.
Text written to the current window will have the attributes specified by the most
recent SetPenAttributes command written to the window. Pen attributes for a
window can be changed as often as desired. These attributes will remain in effect
for the window during its entire existence.

51

EIA-708-B

SET PEN COLOR - (SPC)

Name:

Command Type:

Format:

Parameters:

Command Coding:

SetPenColor - Assign styles to a dynamic preset styte number.

Pen

Set Pen Color (fg color, fg opacity. bg color, bg opacity.
edge color)

• fg color (fr, fg, fb) is the color of the text foreground body (see Section 8.5.6).
• fg opaciO' (fo) is the characteristic of the text foreground body. [SOLID,
FLASH, TRANSLUCENT,TRANSPARENT] ==
[0, 1,2,3].
• br;: color (br, bg, bb) is the color of the background box surrounding the
window text (see Section 8.5.7).
• b't opacitv (bo) is the characteristic of the text background. [SOLID, FLASH,
TRANSLUCENT, TRANSPARENT] ==
[0, 1,2, 3].
• edge color (er, eg, eb) is the color of the outlined edges of the text. The text
character edges have the same opacity value asfg opacity (see Section 8.5.6).

SPC =91h (lOOIOOOlb)

b7 bA b~ b4 b3 b-z b l bo
1 0 0 I 0 0 0 1

fOr foo fr, fro fg, flW fbi fbo
bO I boo br bro bIZ, blZn bb, bbo
0 0 err ero eg, e~ eb, ebo

command

panni

pann2

pann3

Description: SetPenColor assigns the pen color attributes for the current window, as
specified by the current window ID. Text wrinen to the current window will
have the color attributes specified by the most recent SetPenColor command
wrinen to the window. Pen color attributes for a window can be changed as often
as desired. These attributes will remain in effect for the window during its entire
existence.

52

-_.-,-------------------

EIA-708-B

SET PEN LOCAnON - (SPL)

Name: SetPenLocation - Specifies the pen ~unor location within a window.

Command Type: Pen

Format: SetPenLocation (row, column)

Parameters: • !:Q!!: (r) is the text row within the current window's text buffer (0-14).
• column (c) is the text column within the current window's text buffer (0-31 for
4:3 formats, 0-41 for 16:9 formats).

Command Coding: SPL = 92h (lOOlOOlOb)

command

panni

pann~

bbbbbbbb7 6 < 4 J " I 0

1 0 0 1 0 0 1 0
0 0 0 0 I r1 rz rl ro
0 0 I C, C4 C3 C2 CI Co

Description: SetPenLocation repositions the pen cursor for the current window, as specified
by the current window 10.. When the window justification type is "left," The
next group of text written to the current window will start at the specified row
and column, and justification will be ignored. When the window justification
type is not left and the print direction is left-to-right or right-to-left, the column
parameter shall be ignored. When the window justification type is not left and
the print direction is top-to-bottom or bottom-to-top, the row parameter shall be
ignored. When the window justification type is not left, text shall be formatted
based upon the current window justification type. Note that if a window is not
locked (see DefineWindow) and the SMALL pen size (see SetPenAttributes) is
in effect, more than 12 rows and 36 columns could possibly be addressed.

53

EIA-708-B

Name:

Command Type:

Format:

Parameters:

Command Coding:

IDELAY - (DLY)

Delay - Delays service data interpret~tion

Synchronization

Delay (tenths ofseconds)

• tenths of seconds (t) is the number of tenths of seconds to delay before
recommencing service data interpretation.

DLY =8Dh (lOOOIlOlb)

b i

t ~

b~

o
b;;
o
t,

o
t~

o
to

command

panni

Description: Delay instructs receivers to suspend interpretation of the current service's
command input buffer. The delay is specified in tenths of seconds. Once the
delay time expires, interpretation of caption commands recommences.

The delay value may range from I to 255 - which specifies an effective delay
time from 1/10 to 25.5 (255/10) seconds.

A delay for a service will remaining in effect until one of the following
occurrences:

• the specified delay time expires
• a DelayCancei command is received
• the service's input buffer becomes full
• a service Reset command is received

54

EIA-70R-B

DELAY CANCEL - (DLC)

Name:

Command Type:

Format:

Parameters:

Command Coding:

Description:

DelayCancel- Cancels an Active-Delay Command .

Synchronization

DelayCancel

none

DLC =8Eh (lOOOlllOb)

_,.;l__...;.O__...;;"O O;..-_....;l~_...;. __...;.l o.;......I1 ,ommand

DelayCancel command tenninates any active Delay command processing within
the decoder.

55

._-_._,,------------

EIA-708-B

Name:

Command Type:

Format:

Parameters:

Command Coding:

Description:

RESET - (RST)

Reset - Resets the Caption Channel S~rvice

Synchronization

Reset

none

RST = 8Fb (10001111b)

b ll

1.-..:1__....;0__....;;.° °:;..._--:1:.-_--=1.-_.....:.1__-=-_1 command

Reset command reinitializes the service for which it is received.

56

